

An Entomological Perspective for Emergency Agricultural Response

Training Guide

SART Training Media

An Entomological Perspective for Emergency **Agricultural Response**

Training Guide

Prepared in 2007 by:

Susan E. Halbert, PhD Florida Department of Agriculture and Consumer Services **Division of Plant Industry**

Greg Hodges, PhD

Florida Department of Agriculture and Consumer Services **Division of Plant Industry**

Rick Sapp, PhD Florida SART Technical Writer

Updated in 2018 by:

Katie Fairbanks Paul Skelley Leroy Whilby Bureau of Entomology, Nematology, and Plant Pathology (Entomology Section) Florida Department of Agriculture and Consumer Services **Division of Plant Industry**

Copyright by Florida Department of Agriculture and Consumer Services

Published February 2007

SART Training Media are available for download from the Florida SART Web site <www.flsart.org>.

Contents

Training Slides	Appendix A
Resources	3
Specific Learning Objectives	2
About Florida SART	1

About Florida SART

- SART is a multi-agency coordination group.
- SART is made up of over 25 partner agencies (state, federal and nongovernmental organizations).
- SART provides preparedness and response resources for Emergency Support Function 17 [(ESF 17) Animal and Agricultural Issues].
- SART statutory authority
 - o State Emergency Management Act (Section 252.3569, Florida Statutes)

SART Mission

Empower Floridians through training and resource coordination to enhance allhazard disaster planning and response for animal and agricultural issues.

SART Goals

- Support the county, regional and state emergency management efforts and incident management teams.
- Identify county resources available for animal and/or agricultural issues.
- Promote the cooperation and exchange of information of interested state, county and civic agencies.

Specific Learning Objectives

At the end of this training module, participants will be able to:

- Understand some of the exotic agricultural pests currently present and those which pose a significant potential threat to Florida
- Be able to discuss the nature of the threat associated with significant pests
- Be able to identify steps taken to mitigate effects of current exotic agricultural pest infestations, and to prevent the introduction of additional threats
- Be able to identify key resources that participants can easily access for further information and assistance

Resources

The following are sources of additional information about the subjects mentioned in this introduction.

United States Department of Agriculture (USDA)

www.usda.gov

Florida Department of Agriculture and Consumer Services (FDACS) https://www.freshfromflorida.com

FDACS-Division of Plant Industry

https://www.freshfromflorida.com/Divisions-Offices/Plant-Industry

FDACS Division of Animal Industry

https://www.freshfromflorida.com/Divisions-Offices/Animal

Industry Florida Agriculture Statistical Directory 2004

https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/ Annual_Statistical_Bulletin/ FL_Agriculture_Book/2015/2015_FL_Ag_by_the_Numbers.pdf

Bemisia Pest Alert issues by FDACS-DPI

https://www.freshfromflorida.com/content/download/68503/1614891/ Pest_Alert_-_Bemisia_tabaci_Gennadius_Q_biotype_.pdf

Florida Department of Agriculture Annual Report

https://www.freshfromflorida.com/Forms-Publications/Publications/FDACS-Annual-Reports

FDACS' Division of Marketing and Development Internet site provides information to agribusinesses and the general public about Florida agriculture

https://www.freshfromflorida.com/Divisions-Offices/Marketing-and-Development

USDA, Animal and Plant Health Inspection Service, National Center for Import and Export

www.aphis.usda.gov/vs/ncie

Resources, continued

Pests.org https://www.pests.org/killer-bees/

Florida State Agricultural Response Team https://flsart.org/

Integrated Pest Management, IFAS Extension, University of Florida http://sfyl.ifas.ufl.edu/

An Entomological Perspective for Emergency Agricultural Response

Appendix A - Training Slides

SART Training Media

An Entomological Perspective for Emergency Agricultural Response

Prepared by

Bureau of Entomology, Nematology, and Plant Pathology (Entomology Section) Florida Department of Agriculture and Consumer Services, Division of Plant Industry

Learning Objectives

At the end of this training module, participants will:

- Understand some of the exotic agricultural pests currently present and those which pose a significant potential threat to Florida
- Be able to discuss the nature of the threat associated with significant pests
- Be able to identify steps taken to mitigate effects of current exotic agricultural pest infestations, and to prevent the introduction of additional threats
- Be able to identify key resources that participants can easily access for further information and assistance

State Agricultural Response Team

State Agricultural Response Team

Division of Plant Industry

Identify Economically Important Agricultural Pests

- Inspectors and the public send samples for expert identification
- Identification leads to response:
 - Public Outreach
 - Risk and Pathway Analysis
 - Surveillance

State Agricultural Response Team

- Mitigation (Eradication or Management)

Entomology Section

- Responsible for Identification of Insects, Mites, & Mollusks
- Manage the Florida State Collection of Arthropods (FSCA)
 - Collection of 10,000,000 Arthropods from around the world
 - Used as a reference for identification of all native and non-native species

Entomology Section: Additional Identification Resources

• Library

State Agricultural Response Team

- Provides access to reference information to support identification and regulatory activities
- Molecular Laboratory
 - Provides analyses of species complexes

```
State Agricultural Response Team
```

Major Groups of Agricultural Pests

- Scales
- Mites Beetles
- Mealybugs • Whiteflies
- Aphids
- Stink Bugs
- Psyllids
- Hoppers
- Mollusks
 - Fruit Flies

• Thrips

Butterflies & Moths

State Agricultural Response Team

Scales

- Divided into three groups: armored, soft, and mealybugs.
- · Armored scales secrete a waxy covering resembling a plate of armor; it is not an integral part of the insect's body, the scale lives and feeds beneath it
- Soft scales also secrete a waxy covering, but it is an integral part of their body.

Appendix A: Slides 7-9

Whiteflies

- Most common and perhaps most difficult to control insect pests in greenhouses and interior landscapes
 - Difficult to control due to small size and cryptic nature
- Feed by sucking plant juices; heavy feeding can give plants a mottled look, causing yellowing and eventually death
- Excrete sticky honeydew, which permits the development of black sooty mold fungus, which retards plant growth and often causes leaf drop.

10

State Agricultural Response Team

Psyllids

- Damage: stunted growth, leaf curl, and can transmit plant pathogens
- Host Range: mostly specialists, some generalists
- Sampling Methods: beating, visual surveys, traps

Hoppers

- Damage: leaf chlorosis, general decline, and can transmit plant pathogens
- Host Range: some specialists, some generalists
- Sampling Methods: sweeping. Often males are needed for species ID, so submit as many as possible

Beetles

- Extremely diverse, hundreds of thousands of species
 Some specialized to specific hosts, some generalists
- Sampling Method: inspect host and associated damage
 Often extremely difficult to identify from damage or larvae alone
- · Damage: foliage, fruit, roots; many wood-boring species

Moths & Butterflies

- 3,000 species in Florida, >160,000 worldwide
- Most eat plants; there are generalists
 and host specialists.
- Sampling Methods:
 Look for caterpillars associated with
 - damage
 Pheromone traps for adult moths
- Caterpillars directly consume plant tissue
 Damage to any plant part.

State Agricultural Response Team

17

Appendix A: Slides 16-18

Mollusks

- Damage: foliage
- Sampling Methods: inspect foliage, flowers, trunks, soil
- Potential disease vector (rat lung worm)

State Agricultural Response Team

Succinea sp.

19

Fruit Flies

- Nearly 100 major fruit and vegetable pests worldwide, such as Mediterranean fruit fly and Oriental fruit fly
- Fruit flies are highly invasive, frequently triggering expensive eradication
 programs and quarantines when discovered in fly-free areas
- Proactive and intensive port-of-entry inspections, field surveillance, and mating interference (sterile insect technique) programs are necessary to protect agriculture

Florida – A "Sentinel State"

Florida experiences a constant invasion of exotic species What is meant by "exotic"?

- Not native to the Florida ecosystem
- Has potential to cause harm to Florida's environment
- · Has potential to move to other parts of the United States

State Agricultural Response Team

Some Interceptions

- Coccographis nigrorubra

 Found in pet chew sticks from China
 - Not known to be established

25

Some Interceptions

- Anastrepha ludens (Mexican fruit fly)
 - With Manzano peppers originating from Mexico in May 2003 (Pinellas County)
 - Potential pest of citrus
 - No lures for this pest

Exotics Recently Discovered In Florida: Sugarcane Thrips

- First detected in January 2017
- Damage caused by direct feeding on leaves
- Hosts: usually found on sugarcane, may also be found in certain grass species

State Agricultural Response Team

Exotics Recently Discovered In Florida: Lychee Erinose Mite

- Originated in China on host plant, lychee
- Detected in Lee County in 2018.
- Damage through erineum galls, which eventually cover much of the plant.
- Hosts: Almost always only on lychee, but there is a single report of damage on longan in Taiwan.

State Agricultural Response Team

Exotics Recently Discovered In Florida: *Prepona laertes*

- Butterfly native to tropical South and Central America
- Found established in August
 2013
- Many hosts including cocoplum, cabbagebark tree, genip

State Agricultural Response Team

Exotics Recently Discovered In Florida: Hibiscus bud weevil

- Found on hibiscus in May 2017
- Causes bud drop and is known from various species of malvaceous plants
- Native to northeastern Mexico and southern Texas

Not Present in Florida: Suni Bug

- Eurygaster integriceps
- The world's worst agricultural pest
 Feeds on wheat, perhaps the world's most important food crop
- Not found in western hemisphere
- Unlikely to be a problem in Florida, although an insect of this genus has been intercepted in Florida on European tile

31

State Agricultural Response Team

Not Present in Florida: Brown planthopper

- Nilaparvata lugensOne of the world's most
- One of the world's mo serious rice pests
- Delphacid planthopper
- · Migratory pest in Asia
- Plant virus vector

State Agricultural Response Team

 Does not occur in the Western Hemisphere

Not Present in Florida: Cotton Seed Bug

- Oxycarenus hyalinipennis
- Serious pest of cotton
- Established now in the Caribbean
- A small population was discovered in Monroe County in 2010, and has since been eradicated from Florida

Not Present in Florida: South American Potato Psyllid

- Russelliana solanicola
 Found in South America (Peru)
- Causes serious damage to potato
- Transmits a plant
 pathogen

34

35

Not Present in Florida: Asian Longhorn Beetle

- Anoplophorus glabripennis
 Established in Chicago and New York
- Discovered during an agricultural "stake-out"
- Eradication effort involves cutting down large trees in residential areas

Not Present in Florida: Citrus Longhorn Beetle

- Anoplophorus chinensis
- Not established in United States, but intercepted on bonsai trees in Georgia and Washington
- Host plants are numerous hardwoods and Citrus spp., hibiscus, ficus, sycamore, willow, pear, oak, maple, Japanese red cedar

State Agricultural Response Team

Florida – A "Sentinel State"

As a "sentinel state," we often take action to mitigate the threat of exotic agricultural pests.

Emergency Responses

Public Outreach

State Agricultural Response Team

- Press Releases
- Pest Alerts
- Press Conference
- Interviews
- Town Hall Meetings
- Risk and Pathway Analysis
 - Assess level of threat and response
 - Determine avenues of potential movement of infested material

State Agricultural Response Team

Emergency Responses

- Surveillance
 - Delimitation to determine extent of infestation
 - Mapping
 - Trapping
 - Visual Inspection
- Mitigation (Eradication or Management)
 - Quarantine of infestation area
 - Regulation of agricultural products

```
State Agricultural Response Team
```

39

37

Emergency Responses

- Preferred choice is eradication, which may not be possible in most cases.
- If eradication is not possible, several different approaches can be taken to limit threats and restrict movements, including, but not limited to:

40

41

- Regulatory activity
- Research
- Management
- Biocontrol

State Agricultural Response Team

State Agricultural Response Team

Emergency Responses

- When an agricultural pest emergency occurs for which there are eradication measures, the Division of Plant Industry uses the Incident Command System (ICS).
- ICS: a management system that integrates a combination of facilities, equipment, personnel, procedures, and communications operating within a common organizational structure
- Involves the US Department of Agriculture and the Florida Department of Agriculture and Consumer Services

Emergency Response Example: Oriental Fruit Fly Eradication

- · Bactrocera dorsalis is one of the world's most destructive fruit pests
- Not known to be permanently established in the continental United States
- Detection in Florida necessitates an eradication program

State Agricultural Response Team

43

44

Oriental Fruit Fly Eradication: Trigger

- When one fly is detected:
- Increase quantity of traps placed within 81 square miles around detection site

Trigger for Treatment

 Two flies within a 3 mile radius within one life cycle (~30 days); or one mated female; or immature stages

Trigger for Quarantine

State Agricultural Response Team

• Six flies (male and/or female) in a commercial production area within a 3 mile radius during one life cycle

Oriental Fruit Fly Eradication: Public Education

- Response actions for pests and diseases can be very unpopular
- Keep the public informed

 Timely and accurate communication with the press
 - is very important
 Communication of survey and eradication activities, and
 - eradication activities, and possible impact of the pest

Oriental Fruit Fly Eradication: Regulatory Activities

- Establish Quarantine Zones
 - Prevent movement of fruit out of area by:
 - Public outreach
 - Monitoring airports, roadways
 - Compliance agreements
 - Daily monitoring of produce and procedures in Quarantine Zones

Oriental Fruit Fly Eradication: Control

- Male Annihilation Technique (MAT)
 - Male-attractant pheromone lure combined with pesticide applied within the treatment area to light poles or trees in infested area
- Remove and dispose of potentially infested fruits

Oriental Fruit Fly Eradication: Success

The eradication program is considered successful when all program activities are executed and a result of no flies for 3 life cycles after the last fly was detected.

Agricultural Issues Resulting From Invasive Species Introduction

Citrus greening Caused by the bacterium Liberibacter asiaticus

State Agricultural Response Team

- Vectored by the Asian citrus psyllid
- Effects are spot/sector yellowing, notched leaves, misshapen, bitter fruit
- Has reduced Florida citrus production drastically
 No silver bullets for management.

State Agricultural Response Team

Originally from AfricaIntroduced to Americas in 1956:

Africanized bees

49

Working Together To Protect Florida's Agriculture & Way of Life

State Agricultural Respo

Key Resources

- United States Department of Agriculture (USDA)
- Florida Department of Agriculture and Consumer Services (FDACS)
- FDACS-Division of Plant Industry
- FDACS Division of Animal Industry
- Industry Florida Agriculture Statistical Directory 2004
- Bemisia Pest Alert issues by FDACS-DPI

State Agricultural Response Team

Key Resources

- Florida Department of Agriculture Annual Report
- FDACS' Division of Marketing and Development Internet site provides information to agribusinesses and the general public about Florida agriculture
- USDA, Animal and Plant Health Inspection Service, National Center for Import and Export
- Pests.org
- Florida State Agricultural Response Team http
- Integrated Pest Management, IFAS Extension, University of Florida

State Agricultural Response Team

54

Acknowledgements

Photos

- Jeff Lotz, Gary Steck, Steve Garnsey, Julieta Brambila, Paul Skelley, Avas Hamon, Susan Halbert, Russ Mizell, Jim Cuda, Michael Thomas, Natasha Wright, David Nicholls, Zee Ahmed, Felipe Soto-Adames, Jim Hayden, Sam Bolton
- USDA: APHIS, Forest Service
- FDACS-DPI, SPDN/NPDN
- University of Florida/IFAS, University of Georgia, University of Illinois at Urbana-Champaign (Beckman Institute)

55

56

- Virginia Cooperative Extension Service, Pennsylvania Dept. of Agriculture, Washington State Dept. of Agriculture, Minnesota Dept. of Agriculture
- AnimalWire
- Bugguide.net
- Michael Bohne, USDA Forest Service, Bugwood.org
 Wikipedia: The Free Encyclopedia
- <u>a</u> .

State Agricultural Response Team

Acknowledgements

Prepared by: Kate Fairbanks, Paul Skelley, Leroy Whilby Slide Contribution: Zee Ahmed, Sam Bolton, Andy Boring, Susan Halbert, Jim Hayden, Kyle Schnepp, Felipe Soto-Adames, Gary Steck, Elijah Talamas

Florida Department of Agriculture and Consumer Services,

Division of Plant Industry Bureau of Entomology, Nematology, and Plant Pathology (Entomology Section)

State Agricultural Response Team